Information^a, Dynamics, and the Modeling of Images for the Purpose of Compression^b

Andy Fraser Portland State

CNLS-LANL Image Workshop 2002-12-6

^aReferences to Cover and Thomas, "Elements of Information Theory", 1991

^bLossless only

	Topic	Take home points
•	Simple examples	
•	Dynamical system	This can all be viewed as dynamics
•	McMillan Theorem	Entropy is growth rate
•	Typical set coding	$-\log Probability \equiv Code Length$
•	Relative entropy	$D(P Q) \equiv \text{Cost of model error}$
•	Costs of block boundaries	Don't use blocks
•	AR models for image coding	High likelihood \rightarrow compression

Compressing Strings of *Quits*

- Want to map string like BACDAAAB...A of i.i.d letters invertibly
- to short string like 01101010101110010...0 of bits

Letter	Code	Length L	Probability P	$P \cdot L$		_
A	0	1	0.5	0.5		_
В	10	2	0.25	0.5		
C	110	3	0.125	0.375		
D	111	3	0.125	0.375		_
				1.75	$=\overline{\mathbb{E}L}$	Optimal

because $-\log_2(P(x)) = L(x) \ \forall x \text{ and } \mathbb{E}L = H$

Markov Trits

Code for Trits

Given	Followed by	Code	Cond. Prob.
a	a	00	$\frac{1}{4}$
a	ba	01	$\frac{1}{4}$
a	bc	1	$\frac{1}{2}$

$$0 \qquad \frac{1}{2}$$

$$1 \qquad \frac{1}{2}$$

$$H = \frac{10}{11} \text{bits}$$

Avg.
$$\log_2(|f'|) = \frac{10}{11}$$
 bits

Typical Sets and The McMillan Theorem

For large n, the number of plausible strings, x_1^n , is 2^{nH} and the probability of each plausible string is 2^{-nH} excluding a set of strings whose total probability is small.

Notation:

- X A discrete random variable (carries alphabet and probability as freight).
- X Alphabet, i.e., set of possible values.
- P_X The function that maps subsets of X to probabilities.
- P(x), $Pr\{X = x\}$ Variants in notation.
- x_1^n The sequence (x_1, x_2, \dots, x_n) .

Definition 1 The typical set $A_{\varepsilon}^{(n)}$ is the set of sequences such that

$$2^{n(H(X)+\varepsilon)} \le P(x_1^n) \le 2^{n(H(X)-\varepsilon)}$$

Typical Sets^a cont.

Theorem 1 (McMillan) If the process $X_1, X_2, X_3, ...$ is ergodic with probabilities given by $\sim P_X$, then

$$-\frac{1}{n}\log P(x_1^n) \to H(X) \quad in \ probability$$

Theorem 2 The typical set has almost all of the probability, and all of the sequences have about the same probability, more precisely:

1.
$$x_1^n \in A_{\varepsilon}^{(n)} \rightarrow H(\mathcal{X}) - \varepsilon \le -\frac{1}{n} \log P(x_1^n) \le H(\mathcal{X}) + \varepsilon$$

2.
$$Pr\{A_{\varepsilon}^{(n)}\} > 1 - \varepsilon$$
 for n large enough.

3.
$$\left|A_{\varepsilon}^{(n)}\right| \leq 2^{n(H(\mathcal{X})+\varepsilon)}$$

4.
$$\left|A_{\varepsilon}^{(n)}\right| \geq (1-\varepsilon)2^{n(H(X)-\varepsilon)}$$
 for n large enough.

^aCover and Thomas state and prove these theorems for i.i.d. sources. They are true for ergodic sources.

Typical Set Coding

Theorem 3 If the source X_1^n is i.i.d. and $\delta > 0$ then for n large enough there is a code which maps the source to bit strings in a one-to-one fashion and the expected value of the string length satisfies

$$E\left[\frac{1}{n}l(X_1^n)\right] \leq H(\mathcal{X}) + \delta$$

Picture proof of Theorem 3. If you represent each $x_1^n \in A_{\epsilon}^{(n)}$ by a string of $n(H(X) + \epsilon)$ bits and you represent each $x_1^n \notin A_{\epsilon}^{(n)}$ by a string of $n\log(X)$ bits, then the expected value of the number of bits used is bounded by $N_{\text{bits}} \leq n(H(X) + \epsilon) + \epsilon n\log(X) = nH(X) + \epsilon n(1 + \log(X))$. Thus the number of bits per character can be made arbitrarily close to the entropy.

Cost of Model Error

$$D(P||Q) \equiv E_P \log \frac{P(X)}{Q(X)}$$

is the *relative entropy* or Kullback Libeler distance between the two probability functions P and Q.

The average cost incurred by building an optimal code based on a *model* Q when in fact P is true is D(P||Q).

Code length - probability duality

For uniquely decodablity, codeword lengths $\{l_i\}$ must satisfy

$$\sum_{i} 2^{-l_i} \le 1 \tag{1}$$

Minimizing

$$L \equiv E(l(X)) = \sum_{x} P(x)l(x)$$
 (2)

subject to Eqn. 1, one finds that the optimal lengths are

$$l^*(x) = -\log(P(x))$$
, and $L = -\sum_x P(x)\log(P(x)) = H(X)$.

If lengths are interpreted as logs of probabilities, requiring Eqn. 1 to be an equality is the same as requiring that the probabilities sum to one.

Lengths and Probabilities cont.

Conversely, one can derive a probability function Q from a set of code lengths $\{l_i\}$

$$Q(x) = \frac{2^{-l(x)}}{\sum_{y} 2^{-l(y)}}$$

From this point of view, Huffman coding is the solution to the problem:

• Given a probability function *P*, find the probability function *Q* that minimizes

• Subject to

$$\log_2(Q(x)) \in \mathbb{Z}, \ \forall x,$$

ie, find the dyadic *Q* closest to *P*.

Costs of Blocking^a

Plot on the left illustrates the definition of entropy rate, ie, $H(X) = \lim_{n \to \infty} \frac{1}{n} H(X_1^n)$. Plot on the right illustrates the cost of disregarding the history at block boundaries.

There are two costs of blocking:

- Modeling cost (see Fig.).
- Coding cost (can be limited to one bit per block).

^aSee Ross Williams' dissertation (http://www.ross.net/compression/index.html) for an informative rant on the weaknesses of block Huffman coding.

Costs of Blocking cont.

Given $P_{X(t)|X_1^{t-1}}$, i.e., a *model*, one can use arithmetic coding to represent an entire message in a single block, thus paying the blocking costs only once.

Suppose that we use blocks of size *n* and use the following notation:

 P_{X^*} The *true* model.

 $Q_{X_1^n}$ The best block model.

 $R_{X_1^n}$ The best dyadic block model.

Asymptotically, the cost of blocking on a per symbol basis is given by the relative entropy rate, $d(P||R) \equiv \frac{1}{n} E_P \log \frac{P(X_1^n|X_{-\infty}^0)}{R(X_1^n)}$. Note

$$d(P||R) = d(P||Q) + d(Q||R)$$

as illustrated in the Fig.

Modeling Cost: d(P||Q), constrain Q to be *Block Model*

Coding Cost: d(Q||R), constrain R to be Dyadic Block Model

AR Models for image coding

 \hat{y} the central forecast value pixel y

A the matrix of autoregressive coefficients for constructing \hat{y}

$$\hat{y} = \mathbf{A} \cdot \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix}$$
$$(y - \hat{y}) \sim \mathcal{N}(0, \Sigma_y)$$

Data Flow Diagram

One can test new modeling ideas by modifying only the *Analysis* and *Model* modules.